Plasma transfusion, what, when, why, how?

Selapoom Pairor

Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University

E-mail: selapoom_ake@hotmail.com

In certain emergency and critical care situations, transfusion of blood or blood component can potentially be a life-saving and provides positive clinical benefit to the patients. However, as with any treatment in veterinary practice, blood transfusion carries significant risks which needed to be carefully weighed against the achievable benefits and must be prescribed appropriately.

In recent years, administration of blood component either cellular or plasma components instead of whole blood has become increasingly the most important means of transfusion support in veterinary practice. The type of blood component required depends primarily on the underlying disease or condition. This manuscript will focus on the clinical aspects of plasma component transfusion in veterinary emergency and critical care medicine.

The term “plasma component” refers to the supernatant plasma generally prepared from whole blood by differential centrifugation. Plasma that is separated from fresh whole blood and frozen (at or below -18oC) within 6 hours (if ACD is the anticoagulant) to 8 hours (if CPDA-1 is the anticoagulant) of blood collection is called fresh frozen plasma (FFP). FFP contains plasma proteins and adequate activities or concentrations of most clotting factors, ie, von Willebrand factor (vWF), alpha-2 macroglobulin, antithrombin (AT), and other pro- and anticoagulant proteins. Plasma that is frozen after 8 hours of blood collection or plasma initially designated as FFP that is stored for longer than 1 year is considered frozen plasma (FP).

Liquid plasma (LP) refers to plasma separated from stored whole blood (SWB) in a liquid state at any time during storage and stored at 1-6ºC for up to 5 days after the expiration date of the initial whole blood unit (Kakaiya et al., 2011; Wardrop and Brooks, 2016). It has been demonstrated that canine LP undergoes minor loss of coagulation factor activity (Walker, 2016), however, the PT and aPTT remained within reference intervals after stored at 1-6ºC for up to 14 days (Wardrop and Brooks, 2016).

Plasma products can be further processed into plasma-derived components such as cryoprecipitate and cryopoor plasma. Cryoprecipitate (CRYO) is prepared from the precipitated protein that forms when FFP is slowly thawed at 1-6 ºC. This protein is separated from other plasma components by centrifugation. This product is rich in vWF, factor VIII, factor XIII, fibrinogen, and fibronectin (Walker, 2016). In comparison to FFP, CRYO can yield approximately 50-80% of the original factor activity in a smaller volume (Wardrop and Brooks, 2016). Cryopoor plasma or cryosupernatant is the supernatant plasma fraction separated during the production of CRYO. This product is deficient in fibrinogen, VWF, factor VIII, and other cold-insoluble proteins, but retains albumin, other hemostatic proteins and immunoglobulins (Brook, 2010; Wardrop and Brooks, 2016).
General guidelines for plasma transfusion in human medicine state that plasma administration is recommended for patients requiring massive transfusion, and for those with an active hemorrhage secondary to single or multiple hemostatic factor deficiencies (Walker, 2016) but not indicated for a number of clinical situations including wound healing, and treatment of immunodeficiency states (Wong et al. 2007). While consensus guidelines for plasma transfusion have not yet been established in veterinary practice, however, the general guidelines for human patients described above can be applicable based on individual patient need. A brief overview of plasma products commonly used in veterinary practice, in terms of contents, general therapeutic indications, and storage conditions is shown in Table 1.

Table 1 Overview of plasma products, including contents, indications, and storage conditions (Adapted from Walker, 2016).

<table>
<thead>
<tr>
<th>Plasma product</th>
<th>Contents</th>
<th>General therapeutic indications</th>
<th>Storage conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh frozen plasma (FFP)</td>
<td>All coagulation factors, albumin, globulin</td>
<td>Coagulopathy with clinical evidence of hemorrhage; coagulopathy without hemorrhage but with planned invasive procedure</td>
<td>Frozen at≤-18ºC for up to 12 months</td>
</tr>
<tr>
<td>Frozen plasma</td>
<td>Albumin, globulin, most coagulation factors (lower concentration and/or decline in activities of factors V, VII, vWF),</td>
<td>Anticoagulant rodenticide intoxication; coagulopathy due to factors II, VII, IX, X, XI or fibrinogen deficiency</td>
<td>Frozen at≤-18ºC for up to 5 years</td>
</tr>
<tr>
<td>Liquid plasma</td>
<td>Albumin, globulin, all coagulation factors with mildly reduced concentrations of some factors</td>
<td>Emergent treatment of life-threatening coagulopathy</td>
<td>Refrigerated at 1-6 ºC for up to 14 days</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>Concentrated factors VIII, XIII, vWF, fibrinogen, and fibronectin</td>
<td>Hemophilia A, von Willebrand disease, fibrinogen deficiency</td>
<td>Frozen at≤-18ºC for up to 12 months</td>
</tr>
<tr>
<td>Cryopoor plasma</td>
<td>Factors II, V, VII, IX, X, and XI</td>
<td>Deficiency of factors II, V, VII, IX, X, or XI such as anticoagulant rodenticide intoxication</td>
<td></td>
</tr>
</tbody>
</table>

In veterinary practice, FFP is generally transfused at a dose of 10-12 mL/kg. In patients with severe hemostatic factor deficiencies, multiple transfusions might be required to achieve a complete resolution of active hemorrhage. In some instances, initial transfusion of FFP can be followed by lower doses every 8-12 hours through a 1-2 day period to maintain hemostasis (Wardrop and Brooks, 2016).
Theoretically, plasma products can be administered for replacement of albumin, however, high volumes are required as estimated dosage of plasma product at 20-25 mL/kg can raise the albumin by approximately 0.5 g/dL. Human guidelines also discourage the administration of plasma for the treatment of hypoproteinemia (Roback et al, 2010; Walker, 2016). Human albumin solution (HSA) is generally preferred.

Studies in both human and veterinary medicine fails to support plasma transfusion for the treatment of pancreatitis (Leese et al, 1991; Weatherton and Streeter 2009; Roback et al, 2010). Plasma transfusions in human patients with pancreatitis increased circulating alpha-2 macroglobulin, but did not reduce morbidity and mortality (Leese et al. 1987). Retrospective study of FFP administration in dogs with pancreatitis showed no benefit of administration, and, interestingly, the mortality rate for those dogs receiving the plasma was higher than for those that did not (Weatherton and Streeter 2009).

Since the transfusable components in plasma products are biological substances, therefore, plasma transfusion always carries the risks of immunologic and non-immunologic transfusion reactions. The patient should be monitored very carefully during and after transfusion for sings of reaction. A simply way of decreasing the incidence of transfusion reactions is to ensure that plasma products are used when clinically indicated by using evidence-based criteria.

References:
Sepsis and septic shock: detection and management

Department of medicine, Chulalongkorn University

Sepsis and septic shock are most commonly found in critical illness human and animal patients. However, the critical decision making to define the patient is difficult. The second important things after concern sepsis or septic shock in patients are treatments. The treatments should be tailor made and require close monitoring.

Sepsis is not specific disease but it is clinical manifestation of systemic inflammatory response syndrome (SIRS), secondary to an underlying pathogenic organism (1-5). The term SIRS was first established by the American College of Chest Physicians and Society of Critical Care Medicine (ACCP/SCCM) Consensus Conference in 1991 (1). SIRS are characterized widespread activation of inflammatory system which secondary to sterile or infectious insults. Although SIRS have different definition from sepsis, they are usually found together.

The diagnosis usually rely on clinical signs and laboratory works (5). The criteria for SIRS diagnosis are described in tables 1. By the definition, we diagnose sepsis by combination SIRS and its infectious causes (5, 6). Clinical manifestation of SIRS and sepsis are unspecific, depend on original cause of insults (5). So, patient who SIRS and Sepsis concern should have complete blood count, biochemistry profile, urinalysis, coagulation profile and thoracic and abdominal radiographs to attempt identified origin of insults and organ failure.

Table 1 SIRS Criteria in dogs and cats (5)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Dogs 2 criteria required</th>
<th>Cats 3 criteria required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°F)</td>
<td><100.6 or >102.6</td>
<td><100 or >103.5</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>>120</td>
<td><140 or >225</td>
</tr>
<tr>
<td>Respiratory rate (bpm)</td>
<td>>20</td>
<td>>40</td>
</tr>
<tr>
<td>White blood cell (x10³)</td>
<td><6 or 16</td>
<td><5 or >19.5</td>
</tr>
<tr>
<td>Band cells (%)</td>
<td>>3</td>
<td>>5</td>
</tr>
</tbody>
</table>

Treatment goals of both SIRS and sepsis are initial resuscitation, alleviating the inciting cause, and aggressive supportive care (3, 7). Early initial resuscitation is important key to improved survival rate. Initial resuscitation includes not only restoration of hemodynamic homeostasis, but also alleviating the inciting cause through administration of antimicrobial drugs and/or debridement (3, 7). For example, sepsis dog secondary to pyometra, control infection by antibiotics and ovariohysterectomy to remove
source of infection are first goals of treatment. While there are no generally accepted, standardized of initial resuscitation protocols for animals, resuscitation goals should be tailored to the unique physiologic parameters of the species.

Another goal of treatment is aggressive supportive care and long term management. GI protection, oxygenation, acid-base status, PCV or hemoglobin concentration, and organ function monitoring are required (3, 4, 7). Maximizing cellular oxygenation will help maintain tissue viability and avoid multiple organ dysfunctions. Generally, acid-base abnormalities are related to lactic acidosis secondary to poor tissue perfusion and typically resolved with resolution of hypotension and normalization of perfusion. Therefore, bicarbonate administration is rarely needed and in fact may be contraindicated (3). In addition, almost sepsis patients need adequate management of pain and ensure adequate their hygiene and comfort along admission (3, 4, 7).

Septic and SIRS patients are challenge to most clinicians. Patience and close attentions to unique requirement of individual cases are necessary. Some cases require all facilities of your practice and some not. However, these cases can also be extremely rewarding (2).

References

Hypercoagulable canine patient

In the Department of Veterinary Medicine, we have observed an increasing number of cases of hypercoagulable canine patients, particularly those with immune-mediated hemolytic anemia (IMHA), nephrotic syndrome, protein losing enteropathy (PLE), heat stroke, and thromboembolism. These cases have been reported in various studies, including those by Petersen and Mousa (2009), Pommerening and colleagues (2015), and Branco and colleagues (2014)

In the case of hypercoagulable canine patients, we have noticed a significant increase in thromboembolism, particularly in patients with IMHA. This is due to the high incidence of thrombotic events, which can lead to fatal outcomes. In order to address this issue, we have developed a protocol for the treatment of IMHA, which includes the use of antithrombotic drugs.

We have also observed a correlation between the severity of hypercoagulability and the level of proteinuria, as well as the decrease in antithrombin III levels. This is in line with the findings of White and colleagues (2016), who reported a significant decrease in antithrombin III levels in patients with protein losing nephropathy (PLN)

In conclusion, we recommend the use of antithrombotic drugs in the treatment of hypercoagulable canine patients, particularly those with IMHA and nephrotic syndrome. Further research is needed to better understand the mechanisms underlying hypercoagulability in canine patients.
ทั้งหมด 76 ตัวก็ตาม แต่กลับไม่พบความสัมพันธ์กับการมีตัวอย่างต่างๆที่ได้เก็บข้อมูล และทำให้ที่สุดร้อยละ 6.6 ของสุนัขกลุ่มนี้พัฒนาเป็น thromboembolism ในที่สุด

ในสุนัขที่ป่วยด้วย protein losing enteropathy (PLE) แม้ที่ผ่านมาความขัดแจ้งในการเกิดภาวะ hypercoagulability จะไม่เท่า PLN (แต่ในปัจจุบัน 2011 กลุ่มของ Goodwin ก็ได้ตีพิมพ์การศึกษาไปข้างหน้าของสุนัขนี้ในปี 2011 กลุ่มพ่อพันธุ์ที่ดีที่สุดจึงพบว่ากลุ่ม PLE ทำให้การตรวจวิเคราะห์ TEG ของกลุ่มนี้มีความสัมพันธ์กับการเกิด thromboembolism ในที่สุด)

ที่กลุ่มการพยากรณ์ไปข้างหน้าในสุนัขที่ป่วยด้วย protein losing enteropathy (PLE) แม้ที่ผ่านมาความชัดเจนในการเกิดภาวะ hypercoagulability จะไม่เท่า PLN แต่ในที่สุดก็มีการตีพิมพ์การศึกษาของ Goodwin ที่ปี 2011 กลุ่มของ Goodwin ก็ได้ตีพิมพ์การศึกษาไปข้างหน้าของสุนัขที่ป่วยด้วยกลุ่มอาการ PLE จำนวน 15 ตัวที่ป่วยด้วยกลุ่มอาการ PLE นี้มีภาวะ hypercoagulable จากการตรวจวิเคราะห์ TEG นอกจากนี้แต่กลุ่มนี้มีจำนวน 9 ตัวที่ได้รับการรักษาด้วย corticosteroid ทำให้ canine chronic enteropathy activity index (CECAI) ดีขึ้นแต่อย่างไรพารามิเตอร์ hypercoagulable อยู่ในภาวะตรวจแจ้งการรักษา แสดงให้เห็นว่า corticosteroid ไม่มีผลต่อภาวะ hypercoagulable ของสุนัขนี้

Abelson และคณะ (2013) ทำการศึกษาแบบสังเกตการณ์ไปข้างหน้าในสุนัขที่เข้ารับการรักษาที่ Tufts’ Cummings School of Veterinary Medicine ด้วยการวางแผนการรักษา โดยมีการวัด TEG ที่ผ่านมา 10 จาก 30 ตัวที่ผ่านเกณฑ์ มีหลักฐานของ hypercoagulability จากค่า G values ด้วยการตรวจจาก TEG และจากการศึกษาไปข้างหน้าการ hypoaggregability โดยในสุนัขทั้ง 30 ตัว ซึ่งแสดงให้เห็นว่าการได้รับบาดเจ็บนั้นส่งเสริมให้เกิดภาวะ hypercoagulability ได้เช่นเดียวกับมนุษย์

สำหรับโรคมะเร็งมีการพบมานานแล้วในมนุษย์ว่าโรคมะเร็งสามารถส่งผลให้เกิดภาวะ hypercoagulation ได้ ซึ่ง Abelson และคณะ (2013) ทำการศึกษาแบบสังเกตการณ์ไปข้างหน้าในสุนัขที่ป่วยด้วยโรค hyperadrenocorticism และพบว่า 88.2% ของสุนัขที่ส่งรายละเอียดผลการตรวจฉันเบื้องต้นของกลุ่มนี้มีภาวะ hypercoagulable tendency แต่ก็ไม่พบความสัมพันธ์ของค่ามันกับการเกิด hypercoagulability กับการมีของการเข้าร่วมที่สูงกว่าในสุนัขที่ป่วยด้วยโรค Cushing และ Jacoby และคณะ (2001) เคยแสดงถึงผลการศึกษาที่พบว่าสุนัขที่ป่วยด้วยโรค Cushing มีระดับ procoagulation factor II, V, VII, IX, X, XII และ fibrinogen สูงกว่าสุนัขปกติ และยังมีระดับ antithrombin ที่ต่ำกว่าอย่างมีนัยสูงสุดอยู่ด้วยซึ่งทั้งสองงานนี้ยังสนับสนุนในที่ศึกษาเดียวกันเกี่ยวกับ hypercoagulation ใน canine hyperadrenocorticism

Thromboelastography (TEG)

จากหลากหลายกรณีศึกษาที่เกี่ยวโยง hypercoagulable stage ในสุนัขจะเห็นได้ว่า thromboelastography เป็นวิธีการที่สำคัญในการตรวจเพื่อวินิจฉัยปัญหา นอกเหนือจากภาวะกล้องอาการอื่นๆแล้วจะต้องทำวิธีการวัดมันในต่าความไม่และความจำเพาะ เช่น coagulation time (PT, aPTT) fibrinogen assay, antithrombin III activity, platelet count, และ D-dimer เป็นต้น แต่ก็มีต้องใช้เพื่อประกอบการวินิจฉัยหรือพอจะง่ายอีกนิดหนึ่งเมื่อการแสดงการเกิดปัญหาได้
การป้องกันการเกิด thromboembolism

การป้องกันในปัจจุบันเรายิ่งใช้ในกลุ่ม antithrombotics หลากหลายชนิด ทั้งชนิดที่ออกฤทธิ์ยับยั้งการการทำงานของเคล็ดเลือด เช่น aspirin และ clopidogrel และในด้านที่ยับยั้งการทำงานของ coagulation factors เช่น heparin หรือ low molecular weight heparin (enoxaparin และ deltaparin) ซึ่งทั้งหมดนี้ป้องกันการเกิดขึ้นได้เฉพาะจุดในภาวะสัตว์ที่มีวัคซีนมากกว่า แต่การตรวจ TEG มีความจำเป็นต้องตรวจออกภายในหน่วยงาน (in-house) เพราะเมื่อตรวจ ได้รับการตรวจซ้ำไม่เกิน 2 ชั่วโมงและการเก็บก่อนจะต้องต้องทำการตรวจภายใน 30 นาที TEG มีข้อบ่งใช้หลักในการตรวจ หากภาวะ hypercoagulation และเรายิ่งใช้ TEG เพื่อการตรวจติดตามการให้ยาในกลุ่ม anticoagulant โดยเฉพาะอย่างยิ่ง low-molecular weight heparin เช่น enoxaparin (Wiinberg and Kristensen, 2010)

เอกสารอ้างอิง

How to deal with acute hepatitis and acute cholangitis

สพ.ญ.ทักษอร จันาญศิลป์
โรงพยาบาลสัตว์ มหาวิทยาลัยเกษตรศาสตร์ บางเขน
E-mail: the_kaew_devil@hotmail.com

Acute hepatitis อาการที่พบ ได้แก่ เบื่ออาหาร อาเจียน ท้องเสีย อ่อนแรง โดยมักเกิดขึ้นอย่างเฉียบพลัน พบภาวะขาดน้ำและภาวะ Shock, hypovolemia หรือภาวะติดเชื้อ (septic)ในสัตว์ป่วยภาวะ acute hepatic failure อาการอื่นๆ เช่น epistaxis, petechiae, ecchymoses, ถ่ายเป็นเลือด อาจบ่งชี้ถึงภาวะ coagulopathy หรือ DIC บางรายอาจพบภาวะ coagulopathy แปลง mental status มีภาวะ stupor, coma หรือภาวะชัก (seizure) สามารถพบได้ในราย hepatic encephalopathy (HE) การวินิจฉัย จากการซักประวัติร่วมกับอาการที่พบ และการตรวจเลือด พบค่าเอนไซม์ตับสูงขึ้นอย่างมาก ได้แก่ serum ALT, ALP, GGT เป็นต้น, Hyperbilirubinemia, ค่า fasting and post prandial bile acids สูงขึ้น, Hyperammonemia, Hypoglycemia เป็นต้น ภาวะ Anemia จาก hemorrhage, Coagulation abnormalities จากภาวะ coagulopathy, DIC โดยสาเหตุสำคัญที่ทำให้เกิดภาวะ acute hepatic necrosis ในสุนัขและแมว มีดังนี้

<table>
<thead>
<tr>
<th>Type of diseases</th>
<th>Potential cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute massive hepatocyte necrosis: severe necrosis with signs referable to liver disease</td>
<td>Toxic หรือ drug-induced: เช่น Acetaminophen (เฉพาะในแมว), Carprofen (เฉพาะใน Labrador Retrievers); Diazepam (เฉพาะในแมว), potentiated sulphonamides (สุนัข) การติดเชื้อ เช่น canine adenovirus type1; neonatal canine herpes virus; bacterial endotoxemia เป็นต้น Thermal: heat stroke Trauma: hit by car Metabolic: acute hepatic necrosis in young Bedlington Terriers with copper storage disease</td>
</tr>
<tr>
<td>Acute hepatic necrosis: mild to moderate, focal</td>
<td>Milder forms of toxic and drug-induced necrosis Hypoxia: cardiorespiratory disease, severe anemia Cholestasis Septicemia; both focal and diffuse Pancreatitis Inflammatory bowel disease การติดเชื้อ เช่น feline infectious peritonitis; Salmonella; Leptospira; Clostridium spp.; Ehrlichia; Toxoplasma; disseminated aspergillosis</td>
</tr>
<tr>
<td>Acute loss of hepatocyte function with minimal necrosis</td>
<td>Hepatic lipidosis in cat Diffuse tumor infiltrate เช่น lymphoma</td>
</tr>
</tbody>
</table>
หลักการหรือแนวทางการดูแลจัดการภาวะ Acute hepatic disease ที่แนะนำในสุนัขและแมว
1. รักษาสาเหตุของโรค กรณีที่ทราบสาเหตุ
2. การให้สารน้ำทางหลอดเลือดดำ โดยเลือกใช้สารน้ำที่มีส่วนประกอบของ dextrose หรือสารน้ำประเภท Acetate มักพบภาวะ hypokalemia และ hypoglycemia ร่วมด้วย ควรแก้ไขและติดตามอย่างใกล้ชิด คำนวณปริมาณสารน้ำที่ให้โดยสัมพันธ์กับปริมาณปัสสาวะของสัตว์ป่วย
3. กรณีพบภาวะ coagulopathy ให้สารน้ำ fresh frozen plasma เพื่อเติม clotting factors ให้สารน้ำ vitamin K ถ้าจำเป็น
4. การจัดการผู้ป่วยภาวะ acute hepatic encephalopathy: มีการตรวจระดับน้ำตาลและระดับ potassium กรณีพบภาวะ coagulopathy พิจารณาให้ยากระตุ้นชินค propofol หลีกเลี่ยงการใช้ยาพวก barbiturate, พิจารณาให้ lactulose enema
5. รักษาภาวะ GI ulceration โดยให้ H2 blockers และ sucralfate เคียวกระเพาะก่อนกินอาหาร, พิจารณา metoclopramide ในกรณีอาการท้องวูบได้ยาก
6. แก้ไขภาวะ ascites โดยใช้ยาเช่น spironolactone หรือ furosemide เป็นต้น
7. เพิ่มการให้ Antibiotics สำหรับสัตว์ป่วยที่มีแนวโน้มของการติดเชื้อแทรกซ้อนโดยใช้ broad spectrum agents ที่ปลอดภัยในรายผู้ป่วย
8. การให้สารน้ำและการจัดการโภชนาการสำหรับสัตว์ป่วย ควรมีการเสริมสารอาหารที่จำเป็น ให้โดยวิธีการอื่น ได้แก่ ทาง nasoesophageal tube หรือ esophagostomy หรือ parenteral nutrition กรณีไม่ได้กินอาหารตั้งแต่ 2-3 วันเป็นต้นไป

Acute cholangitis ภาวะทางเดินน้ำดีอักเสบในแมว พบว่ามักเกิดร่วมกับภาวะ pancreatitis หรือ inflammatory bowel disease โดยพบ 3 แบบ ได้แก่ Neutrophilic cholangitis, Lymphocytic cholangitis และ Cholangitis ที่เกิดเนื่องจาก liver fluke ส่วนในสุนัขมักเป็น idiopathic หรือเกี่ยวกับปัจจัยด้านสายพันธุ์ และพบภาวะ destructive cholangitis เนื่องมาจาก reaction ของยาบางกลุ่ม ได้แก่ Trimetroprim-sulpha หรือ Sulphonamide อื่นๆ โดยมีเกิดแบบเนื้อเดียวและรุนแรง เมื่อมีการใช้ยาที่ยาวนานหรือมีการกลับมาใช้ยา อาการที่พบได้แก่ อาเจียน, ท้องเสีย, น้ำหนักลด มีไข้, ค่าอัลブูมิน ลดลง, ค่า Alanine transaminase, ค่า Aspartate transaminase, ค่า globulin และ bile acid สูงขึ้น ทำให้ค่า albumin, Glucose และ BUN ต่ำลง ควรให้ยา Suppurative-neutrophilic infiltrate หรือ non-suppurative-Lymphocytic plasmacytic infiltrate ร่วมกับ Culture biliary จาก gall bladder

การรักษา antibiotic ซึ่งให้ยาเชื้อและ sensitivity test, ยาช่วยการขับและไหลเวียนของน้ำดี (Choleretic agent): Ursodeoxycholate สำหรับราย lymphocytic plasmacytic (nonsuppurative cholangiohepatitis) แนะนำ Prednisolone การดูแลที่อื่นๆ ออกคล่องกับการดูแลจัดการภาวะ Acute hepatic disease

References
Cardiopulmonary arrest (CPA) เป็นภาวะที่ต้องได้รับการแก้ไขอย่างทันท่วงที (Resuscitations) มักพบว่า บ่อยครั้งที่มีการช่วยชีวิตประสบความสำเร็จมีการไหลเวียนที่กลับมาปกติ (Return of spontaneous circulation, ROSC) ในช่วงที่ผู้ที่ไม่ได้ช่วยชีวิตมีการหยุดปульซิ่ง นักศึกษาในต่างประเทศพบว่าสัตว์ป่วยที่ได้รับการช่วยชีวิตแล้วมีการตอบสนองอยู่ใน 35-40 เบอร์ชั่วโมง แต่กลับพบว่ามีสัตว์ที่มีการช่วยชีวิตกลับบ้านอย่างปลอดภัย แต่ละสัตว์ที่ไม่ได้ช่วยชีวิตเป็นเรื่องที่สำคัญและควรมีการติดตามจากทางการช่วยชีวิตหรือภาวะที่หวั่นหูดเดิน (Post cardiac arrest syndrome, PCAS) ต่างมีความสำคัญไม่น้อยกว่าการช่วยชีวิต

ภาวะ Post cardiac arrest syndrome, PACS ไม่ได้หมายถึงการตรวจหาสาเหตุของพยายามสาเหตุของ ภาวะการณ์แท้ของสัตว์ป่วยและทางเดินหายใจแต่หมายถึงภาพรวมของเหตุการณ์ที่เกิดขึ้นหลังจากมีการช่วยชีวิตโดยมีความสำคัญในการติดตามสัตว์ป่วยให้มีภาวะเริ่มไหลเวียนโลหิต (ROSC) Post cardiac arrest syndrome มีภาวะที่ต้องติดตามอยู่ 4 ส่วน

1. Post cardiac arrest brain injury
2. Post cardiac arrest myocardial dysfunction
3. Systemic ischemia/reperfusion response
4. Persistent precipitate pathology

Post cardiac arrest syndrome มีความจำเป็นที่ต้องใช้ผู้ที่มีประสบการณ์ในหลายสาขาในการช่วยวินิจฉัยประเมินและเฝ้าติดตามอาการ ระยะเวลาที่ช่วยเพื่อการตัดสินภาวะการเกิด PCAS จะอยู่ใน 72 ชั่วโมงแรกมีความจำเป็นต้องเฝ้าติดตามอาการอย่างใกล้ชิด สัตว์ป่วยที่จะอยู่ในภาวะติดตามระยะยาวจะต้องมีการเฝ้าติดตามเพื่อป้องกันการกลับมาเป็นซ้ำอยู่ตลอดเวลา เพราะในการเกิด cardiopulmonary arrest ในแต่ละครั้งทำให้เกิดภาวะร่างกายขาดเลือดไปเรื่อย ส่งผลต่อสัตว์สัตว์ที่จะเกิดพยาธิสภาพมากขึ้น โดยจะต้องรู้ในตารางเกี่ยวกับภาวะ Post cardiac arrest syndrome
<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Pathophysiology</th>
<th>Clinical manifestation</th>
<th>Potential treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post cardiac arrest brain injury</td>
<td>- Impaired cerebrovascular autoregulation
- Cerebral edema
- Post ischemia neurodegeneration</td>
<td>- Coma
- Seizure
- Cognitive dysfunction
- Brain death</td>
<td>- Therapeutic hypothermia
- Airway protection
- Early hemodynamic optimization
- Seizure control
- Re-oxygenation (Sato2 94-96%)
- Supportive care</td>
</tr>
<tr>
<td>Post cardiac arrest myocardial dysfunction</td>
<td>- Myocardial ischemia</td>
<td>- Reduce cardiac output
- Hypotension
- Dysrhythmia
- Cardiovascular collapse</td>
<td>- Early hemodynamic optimization
- Intravascular fluid
- Inotrope</td>
</tr>
<tr>
<td>Systemic ischemia/reperfusion response</td>
<td>- Systemic inflammatory response syndrome
- Impaired vasoregulation
- Coagulopathy
- Impaired tissue oxygen delivery and utilization
- Impaired resistance to infection</td>
<td>- Ongoing tissue hypoxia/ischemia
- Hypotension
- Cardiovascular collapse
- Pyrexia (fever)
- Hyperglycaemia
- Multi organ failure
- Infection</td>
<td>- Early hemodynamic optimization
- Intravascular fluid
- Vasopressor
- Temperature control
- Glucose control
- Antibiotic</td>
</tr>
<tr>
<td>Persistant precipitate pathology</td>
<td>- Cardiovascular disease
- Pulmonary disease
- CNS disease
- Toxicology (overdose, poisoning)
- Infection (sepsis)
- Hypovolemia (hemorrhage, dehydrate)</td>
<td>- Specific to cause</td>
<td>- Disease-specific intervention guide by patient condition and concomitant PCAS</td>
</tr>
</tbody>
</table>
การติดตามสัตว์ป่วยที่อยู่ในภาวะ Post Cardiac arrest syndrome ควรมีการติดตามดังนี้

1. General intensive care: oxygen saturation and pulse oximetry, continued EKG, Temperature, urine output, arterial blood gas, blood glucose and electrolyte, CBC blood chemistry, Chest radiograph
2. More advance hemodynamic monitoring: echocardiograph, cardiac output monitoring
3. Cerebral monitoring: EEG (on indication or continuous early seizure detection and treatment, CT/MRI)

จะเห็นได้ว่าภาวะ Post cardiac arrest syndrome มีอายุรศาสตร์หลายสาขาที่เกี่ยวข้องและส่วนแต่ละมีความสำคัญในการติดตามสัตว์ป่วย

ในทางสัตวแพทย์เองจึงมีความจำเป็นที่ต้องศึกษาความสัมพันธ์ โรคต่าง ๆ หรือภาวะที่เกิดขึ้นด้วยอย่างรอบคอบ เพื่อที่จะนำไปใช้ในวิจัย เพื่อให้การติดตามสัตว์ป่วยได้อย่างมีประสิทธิภาพต่อไป

เอกสารอ้างอิง

Antimicrobial in critical care patient

Chenphop Sawangmake (DVM, MSc, PhD)

Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, THAILAND

E-mail: chenphop.s@chula.ac.th

Critical care patients may require antimicrobial therapy for direct treatment of underlying bacterial infection or treatment of secondary infection due to disease status. In some cases, hospital-acquired or nosocomial infection might occur and antimicrobial therapy is eventually needed. Nosocomial infection is considered when infection occurs after 48 hours of hospitalization and typically involved with infection through intravenous (IV) catheterization, open wound, and urinary bladder (UB) catheterization. Goals of antimicrobial therapy in critical care patient include 1) effective treatment of underlying pathogenic organism(s), and 2) prevent and overcome antimicrobial resistant (AMR) burden. Not all patients require antimicrobial therapy. Care must be taken to verify whether antimicrobial therapy is necessitated.

Points of concern in antimicrobial therapy in critical care patients are mainly related with pharmacokinetic and pharmacodynamic issues. Pharmacokinetics help ensure that the drug reaches site of infection especially some privileged sites e.g. central nervous system (CNS), eyes, prostate gland, and testes. In such organs, recommended antimicrobials include fluoroquinolones, doxycycline, potentiated sulfonamides, and chloramphenicol. Aminoglycosides are not recommended for treatment of necrotic tissue and abscess. For pharmacodynamics, this is to ensure that the effective antimicrobials and appropriate dosing regimen are chosen. Prudent empirical treatment is the key of success in treatment of acute and serious infection. Bacterial identification and antimicrobial susceptibility test (AST) are still important and need to perform in most cases. According to previous data, *E. coli* is mainly found and considered as the cause of sepsis. In this regard, blood and urine culture are required to confirm. In patient with bacterial infection from gut origin, treatment should be focused on gram negative anaerobic bacteria and *Enterococcus*. Fluoroquinolones are antimicrobial of choice in this regard as well as the treatment of infection due to aspiration pneumonia that usually involves *E. coli* and *Pasturella*. *Staphylococcus* is involved with joint sepsis and cephalosporins are required.

For antimicrobial actions, concepts of time-dependent and concentration-dependent antimicrobials are crucial. Killing activity of time-dependent antimicrobials like beta-lactams depends on duration within dosing interval that the blood or tissue concentration of drug is above the minimum inhibitory concentration (MIC) of particular organism. Antimicrobials with short elimination half-life (T1/2) need frequent administration or constant rate infusion (CRI) e.g. ticarcillin and ceftazidime. Concentration-dependent antimicrobials like aminoglycosides and fluoroquinolones can be administered as a once daily dosing. Killing activity of such antimicrobials relies on drug dose that
gives at least ten folds of peak serum concentration (Cmax) above MIC. Aminoglycosides normally used as 3- to 5-day course due to their renal toxicity. Urine sediments should be routinely checked for presenting of casts. Fluoroquinolones exert post-antibiotic effect (PAE).

For containment of AMR bacterial infection, care should be taken on 1) localizing infection site(s), 2) identifying pathogenic organism(s), and 3) obtaining AST and MIC results. Some procedures are required for minimizing acquired infection e.g. hand washing, reducing indwelling time of IV or UB catheterization, strengthening hygienic procedure for IV or UB catheterization, reducing/avoiding antimicrobial uses for prophylaxis or during UB catheterization. There are three different types of AMR including 1) intrinsic resistance (inherit resistance), 2) circumstantial resistance (in vitro susceptible, but lack of efficacy in vivo), and 3) acquired resistance (phenotype change leading to AMR).

In terms of antimicrobial therapy, two technical terms are normally used to define pattern of selected antimicrobials, escalation and de-escalation. Escalation refers to a selection of narrow spectrum antimicrobials that usually involves drug selection based on AST or MIC results while de-escalation involves empirical treatment of broad-spectrum antimicrobials aiming for coverage of most disease-related pathogenic organisms. De-escalation aims to lower mortality rate by early achievement of suitable empirical therapy and prevent AMR especially in patient with severe sepsis, septic shock, or severe nosocomial infection. Bacterial culture and AST are still required for further escalation of treatment.

In conclusion, antimicrobial therapy in critical care patient aims for safe patient’s life from underlying pathogenic infection or serious hospital-acquired infection while minimizing AMR issue is another concern.